Leif Ericsson Silicon / Germanium Molecular Beam

نویسنده

  • Leif Ericsson
چکیده

Molecular Beam Epitaxy (MBE) is a well-established method to grow lowdimensional structures for research applications. MBE has given many contributions to the rapid expanding research-area of nano-technology and will probably continuing doing so. The MBE equipment, dedicated for Silicon/Germanium (Si/Ge) systems, at Karlstads University (Kau) has been studied and started for the first time. In the work of starting the system, all the built in interlocks has been surveyed and connected, and the different subsystems has been tested and evaluated. Service supplies in the form of compressed air, cooling water and electrical power has been connected. The parts of the system, their function and some of the theory behind them are described. The theoretical part of this master’s thesis is focused on low-dimensional structures, so-called quantum wells, wires and dots, that all are typical MBE-built structures. Physical effects, and to some extent the technical applications, of these structures are studied and described. The experimental part contains the MBE growth of a Si/Ge quantum well (QW) structure and characterisation by Auger Electron Spectroscopy (AES). The structure, consisting of three QW of Si0,8Ge0,2 separated by thicker Si layers, was built at Linköpings University (LiU) and characterised at Chalmers University of Technology (CTH). The result of the characterisation was not the expected since almost no Ge content could be discovered but an extended characterisation may give another result.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands

We report the realization of a silicon three-dimensional photonic crystal nanocavity containing self-assembled germanium-island emitters. The three-dimensional woodpile photonic crystal was assembled layer by layer by micromanipulation using silicon plates grown by molecular beam epitaxy. An optical nanocavity was formed in the center of the photonic crystal by introducing a point defect into o...

متن کامل

Ion-Beam-Induced Atomic Mixing in Ge, Si, and SiGe, Studied by Means of Isotope Multilayer Structures

Crystalline and preamorphized isotope multilayers are utilized to investigate the dependence of ion beam mixing in silicon (Si), germanium (Ge), and silicon germanium (SiGe) on the atomic structure of the sample, temperature, ion flux, and electrical doping by the implanted ions. The magnitude of mixing is determined by secondary ion mass spectrometry. Rutherford backscattering spectrometry in ...

متن کامل

SiGe virtual substrate HMOS transistor for analogue applications

Silicon-Germanium Heterojunction Metal-Oxide-Semiconductor Field-EffectTransistors (SiGe HMOSFETs) have been successfully fabricated on Si substrate. The semiconductor heterostructure, which was grown by gas-source molecular beam epitaxy (GS-MBE), was initiated by the deposition of a Si0.7Ge0.3 “virtual substrate”. The n-type transistors were fabricated using a standard MOS process. The channel...

متن کامل

A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications

SrTiO3 epitaxial growth by molecular beam epitaxy (MBE) on silicon has opened up the route to the monolithic integration of various complex oxides on the complementary metal-oxide-semiconductor silicon platform. Among functional oxides, ferroelectric perovskite oxides offer promising perspectives to improve or add functionalities on-chip. We review the growth by MBE of the ferroelectric compoun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006